— 393 —
      Haec omnia uno aut altero exemplo illustranda sunt.
Si, v. g., quaerat aliquis solius Mathematicae studiosus
lineam illam, quam in Dioptrica anaclasticam vocant,
— 394 —
in qua scilicet radij paralleli ita refringantur, ut omnes
post refractionem se in uno puncto intersecent: facile
quidem animadvertet, juxta regulas quintam et sextam,
hujus lineae determinationem pendere a proportione,
quam servant anguli refractionis ad angulos
incidentiae; sed quia hujus indagandae non erit capax,
cum non ad Mathesim pertineat, sed ad Physicam, hic
sistere cogetur in limine, neque aliquid aget, si hanc
cognitionem vel a Philosophis audire, vel ab experientia
velit mutuari: peccaret enim in regulam tertiam.
Ac praeterea haec propositio composita adhuc est et
respectiva; atqui de rebus tantum pure simplicibus
et absolutis experientiam certam haberi posse, dicetur
suo loco. Frustra etiam proportionem inter ejusmodi
angulos aliquam supponet, quam omnium verissimam
esse suspicabitur; tunc enim non amplius anaclasticam
quaereret, sed tantum lineam, quae suppositionis suae
rationem sequeretur.
Descartes Reg 393-394